JEE MAIN - Mathematics (2024 - 31st January Morning Shift - No. 8)

Three rotten apples are accidently mixed with fifteen good apples. Assuming the random variable $$x$$ to be the number of rotten apples in a draw of two apples, the variance of $$x$$ is
$$\frac{57}{153}$$
$$\frac{40}{153}$$
$$\frac{37}{153}$$
$$\frac{47}{153}$$

Explanation

3 bad apples, 15 good apples.

Let $$\mathrm{X}$$ be no of bad apples

$$\begin{aligned} & \text { Then } \mathrm{P}(\mathrm{X}=0)=\frac{{ }^{15} \mathrm{C}_2}{{ }^{18} \mathrm{C}_2}=\frac{105}{153} \\ & \mathrm{P}(\mathrm{X}=1)=\frac{{ }^3 \mathrm{C}_1 \times{ }^{15} \mathrm{C}_1}{{ }^{18} \mathrm{C}_2}=\frac{45}{153} \\ & \mathrm{P}(\mathrm{X}=2)=\frac{{ }^3 \mathrm{C}_2}{{ }^{18} \mathrm{C}_2}=\frac{3}{153} \\ & \mathrm{E}(\mathrm{X})=0 \times \frac{105}{153}+1 \times \frac{45}{153}+2 \times \frac{3}{153}=\frac{51}{153} \\ & =\frac{1}{3} \\ & \operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^2\right)-(\mathrm{E}(\mathrm{X}))^2 \\ & =0 \times \frac{105}{153}+1 \times \frac{45}{153}+4 \times \frac{3}{153}-\left(\frac{1}{3}\right)^2 \\ & =\frac{57}{153}-\frac{1}{9}=\frac{40}{153} \end{aligned}$$

Comments (0)

Advertisement