JEE MAIN - Mathematics (2024 - 31st January Morning Shift - No. 30)

Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined by $$f(x)=\frac{4^x}{4^x+2}$$ and $$M=\int_\limits{f(a)}^{f(1-a)} x \sin ^4(x(1-x)) d x, N=\int_\limits{f(a)}^{f(1-a)} \sin ^4(x(1-x)) d x ; a \neq \frac{1}{2}$$. If $$\alpha M=\beta N, \alpha, \beta \in \mathbb{N}$$, then the least value of $$\alpha^2+\beta^2$$ is equal to __________.
Answer
5

Explanation

$$\mathrm{f}(\mathrm{a})+\mathrm{f}(1-\mathrm{a})=1$$

$$M=\int_\limits{f(a)}^{f(1-a)}(1-x) \cdot \sin ^4 x(1-x) d x$$

$$\mathrm{M}=\mathrm{N}-\mathrm{M} \qquad 2 \mathrm{M}=\mathrm{N}$$

$$\alpha=2 ; \beta=1 \text {; }$$

Ans. 5

Comments (0)

Advertisement