JEE MAIN - Mathematics (2024 - 31st January Morning Shift - No. 3)

Let $$\mathrm{S}$$ be the set of positive integral values of $$a$$ for which $$\frac{a x^2+2(a+1) x+9 a+4}{x^2-8 x+32} < 0, \forall x \in \mathbb{R}$$. Then, the number of elements in $$\mathrm{S}$$ is :
0
$$\infty$$
3
1

Explanation

$x^2-8 x+32>0 \forall x \in R$ as discriminant of this quadratic is $64-4 \times 32<0$

$$ \Rightarrow a x^2+2(a+1) x+9 a+4<0 \forall x \in R $$

$\Rightarrow$ Only possible when $a<0$ and $D<0$

$\Rightarrow$ Since $S$ is set of positive values of $a \Rightarrow S$ is a null set

$$ \Rightarrow n(S)=0 $$

Comments (0)

Advertisement