JEE MAIN - Mathematics (2024 - 31st January Morning Shift - No. 16)

The solution curve of the differential equation $$y \frac{d x}{d y}=x\left(\log _e x-\log _e y+1\right), x>0, y>0$$ passing through the point $$(e, 1)$$ is
$$\left|\log _e \frac{y}{x}\right|=y^2$$
$$\left|\log _e \frac{y}{x}\right|=x$$
$$\left|\log _e \frac{x}{y}\right|=y$$
$$2\left|\log _e \frac{x}{y}\right|=y+1$$

Explanation

$$\frac{\mathrm{dx}}{\mathrm{dy}}=\frac{\mathrm{x}}{\mathrm{y}}\left(\ln \left(\frac{\mathrm{x}}{\mathrm{y}}\right)+1\right)$$

Let $$\frac{x}{y}=t \Rightarrow x=t y$$

$$\begin{aligned} & \frac{d x}{d y}=t+y \frac{d t}{d y} \\ & t+y \frac{d t}{d y}=t(\ln (t)+1) \end{aligned}$$

$$\mathrm{y} \frac{\mathrm{dt}}{\mathrm{dy}}=\mathrm{t} \ln (\mathrm{t}) \Rightarrow \frac{\mathrm{dt}}{\mathrm{t} \ln (\mathrm{t})}=\frac{\mathrm{dy}}{\mathrm{y}}$$

$$\Rightarrow \int \frac{\mathrm{dt}}{\mathrm{t} \cdot \ln (\mathrm{t})}=\int \frac{\mathrm{dy}}{\mathrm{y}}$$

$$\Rightarrow \int \frac{d p}{p}=\int \frac{d y}{y} \quad$$ let $$\ln t=p$$

$$\frac{1}{\mathrm{t}} \mathrm{dt}=\mathrm{dp}$$

$$\begin{aligned} & \Rightarrow \ln p=\ln y+c \\ & \ln (\ln t)=\ln y+c \\ & \ln \left(\ln \left(\frac{x}{y}\right)\right)=\ln y+c \\ & \text { at } x=e, y=1 \\ & \ln \left(\ln \left(\frac{e}{1}\right)\right)=\ln (1)+c \Rightarrow c=0 \end{aligned}$$

$$\begin{aligned} & \ln \left|\ln \left(\frac{x}{y}\right)\right|=\ln y \\ & \left|\ln \left(\frac{x}{y}\right)\right|=e^{\ln y} \\ & \left|\ln \left(\frac{x}{y}\right)\right|=y \end{aligned}$$

Comments (0)

Advertisement