JEE MAIN - Mathematics (2024 - 31st January Morning Shift - No. 16)
Explanation
$$\frac{\mathrm{dx}}{\mathrm{dy}}=\frac{\mathrm{x}}{\mathrm{y}}\left(\ln \left(\frac{\mathrm{x}}{\mathrm{y}}\right)+1\right)$$
Let $$\frac{x}{y}=t \Rightarrow x=t y$$
$$\begin{aligned} & \frac{d x}{d y}=t+y \frac{d t}{d y} \\ & t+y \frac{d t}{d y}=t(\ln (t)+1) \end{aligned}$$
$$\mathrm{y} \frac{\mathrm{dt}}{\mathrm{dy}}=\mathrm{t} \ln (\mathrm{t}) \Rightarrow \frac{\mathrm{dt}}{\mathrm{t} \ln (\mathrm{t})}=\frac{\mathrm{dy}}{\mathrm{y}}$$
$$\Rightarrow \int \frac{\mathrm{dt}}{\mathrm{t} \cdot \ln (\mathrm{t})}=\int \frac{\mathrm{dy}}{\mathrm{y}}$$
$$\Rightarrow \int \frac{d p}{p}=\int \frac{d y}{y} \quad$$ let $$\ln t=p$$
$$\frac{1}{\mathrm{t}} \mathrm{dt}=\mathrm{dp}$$
$$\begin{aligned} & \Rightarrow \ln p=\ln y+c \\ & \ln (\ln t)=\ln y+c \\ & \ln \left(\ln \left(\frac{x}{y}\right)\right)=\ln y+c \\ & \text { at } x=e, y=1 \\ & \ln \left(\ln \left(\frac{e}{1}\right)\right)=\ln (1)+c \Rightarrow c=0 \end{aligned}$$
$$\begin{aligned} & \ln \left|\ln \left(\frac{x}{y}\right)\right|=\ln y \\ & \left|\ln \left(\frac{x}{y}\right)\right|=e^{\ln y} \\ & \left|\ln \left(\frac{x}{y}\right)\right|=y \end{aligned}$$
Comments (0)
