JEE MAIN - Mathematics (2024 - 31st January Evening Shift - No. 27)
Let $$A=\{1,2,3, \ldots \ldots \ldots \ldots, 100\}$$. Let $$R$$ be a relation on $$\mathrm{A}$$ defined by $$(x, y) \in R$$ if and only if $$2 x=3 y$$. Let $$R_1$$ be a symmetric relation on $$A$$ such that $$R \subset R_1$$ and the number of elements in $$R_1$$ is $$\mathrm{n}$$. Then, the minimum value of $$\mathrm{n}$$ is _________.
Answer
66
Explanation
$$\begin{aligned}
& \mathrm{R}=\{(3,2),(6,4),(9,6),(12,8), \ldots \ldots \ldots .(99,66)\} \\
& \mathrm{n}(\mathrm{R})=33 \\
& \therefore 66
\end{aligned}$$
Comments (0)
