JEE MAIN - Mathematics (2024 - 31st January Evening Shift - No. 24)
Let $$A(-2,-1), B(1,0), C(\alpha, \beta)$$ and $$D(\gamma, \delta)$$ be the vertices of a parallelogram $$A B C D$$. If the point $$C$$ lies on $$2 x-y=5$$ and the point $$D$$ lies on $$3 x-2 y=6$$, then the value of $$|\alpha+\beta+\gamma+\delta|$$ is equal to ___________.
Answer
32
Explanation
$$\begin{aligned} & \mathrm{P} \equiv\left(\frac{\alpha-2}{2}, \frac{\beta-1}{2}\right) \equiv\left(\frac{\gamma+1}{2}, \frac{\delta}{2}\right) \\ & \frac{\alpha-2}{2}=\frac{\gamma+1}{2} \text { and } \frac{\beta-1}{2}=\frac{\delta}{2} \\ & \Rightarrow \alpha-\gamma=3 \ldots .(1), \beta-\delta=1 \ldots \ldots (2) \end{aligned}$$
Also, $$(\gamma, \delta)$$ lies on $$3 x-2 y=6$$
$$3 \gamma-2 \delta=6$$ ..... (3)
and $$(\alpha, \beta)$$ lies on $$2 x-y=5$$
$$\Rightarrow 2 \alpha-\beta=5 \text {. }$$
Solving (1), (2), (3), (4)
$$\begin{aligned} & \alpha=-3, \beta=-11, \gamma=-6, \delta=-12 \\ & |\alpha+\beta+\gamma+\delta|=32 \end{aligned}$$
Comments (0)
