JEE MAIN - Mathematics (2024 - 31st January Evening Shift - No. 17)

Consider the function $$f:(0, \infty) \rightarrow \mathbb{R}$$ defined by $$f(x)=e^{-\left|\log _e x\right|}$$. If $$m$$ and $$n$$ be respectively the number of points at which $$f$$ is not continuous and $$f$$ is not differentiable, then $$m+n$$ is
0
1
2
3

Explanation

$$\begin{aligned} & f:(0, \infty) \rightarrow R \\ & f(x)=e^{-\left|\log _e x\right|} \end{aligned}$$

$$\mathrm{f}(\mathrm{x})=\frac{1}{\mathrm{e}^{|\ln \mathrm{x}|}}=\left\{\begin{array}{l} \frac{1}{\mathrm{e}^{-\ln \mathrm{x}}} ; 0<\mathrm{x}<1 \\ \frac{1}{\mathrm{e}^{\ln \mathrm{x}}} ; \mathrm{x} \geq 1 \end{array}\right.$$

$$\left\{\begin{array}{l} \frac{1}{\frac{1}{x}}=x ; 0< x<1 \\ \frac{1}{x}, x \geq 1 \end{array}\right.$$

JEE Main 2024 (Online) 31st January Evening Shift Mathematics - Limits, Continuity and Differentiability Question 33 English Explanation

$$\mathrm{m}=0$$ (No point at which function is not continuous)

$$\mathrm{n}=1$$ (Not differentiable)

$$\therefore \mathrm{m}+\mathrm{n}=1$$

Comments (0)

Advertisement