JEE MAIN - Mathematics (2024 - 31st January Evening Shift - No. 15)
Let $$z_1$$ and $$z_2$$ be two complex numbers such that $$z_1+z_2=5$$ and $$z_1^3+z_2^3=20+15 i$$ Then, $$\left|z_1^4+z_2^4\right|$$ equals -
$$15 \sqrt{15}$$
$$30 \sqrt{3}$$
$$25 \sqrt{3}$$
75
Explanation
$$\begin{aligned}
& z_1+z_2=5 \\
& z_1^3+z_2^3=20+15 i \\
& z_1^3+z_2^3=\left(z_1+z_2\right)^3-3 z_1 z_2\left(z_1+z_2\right) \\
& z_1^3+z_2^3=125-3 z_1 \cdot z_2(5) \\
& \Rightarrow 20+15 i=125-15 z_1 z_2 \\
& \Rightarrow 3 z_1 z_2=25-4-3 i \\
& \Rightarrow 3 z_1 z_2=21-3 i \\
& \Rightarrow z_1 \cdot z_2=7-i \\
& \Rightarrow\left(z_1+z_2\right)^2=25 \\
& \Rightarrow z_1^2+z_2^2=25-2(7-i) \\
& \Rightarrow 11+2 i \\
& \left(z_1^2+z_2^2\right)^2=121-4+44 i \\
& \Rightarrow z_1^4+z_2^4+2(7-i)^2=117+44 i \\
& \Rightarrow z_1^4+z_2^4=117+44 i-2(49-1-14 i) \\
& \Rightarrow\left|z_1^4+z_2^4\right|=75
\end{aligned}$$
Comments (0)
