JEE MAIN - Mathematics (2024 - 31st January Evening Shift - No. 12)

The temperature $$T(t)$$ of a body at time $$t=0$$ is $$160^{\circ} \mathrm{F}$$ and it decreases continuously as per the differential equation $$\frac{d T}{d t}=-K(T-80)$$, where $$K$$ is a positive constant. If $$T(15)=120^{\circ} \mathrm{F}$$, then $$T(45)$$ is equal to
90$$^\circ$$ F
85$$^\circ$$ F
80$$^\circ$$ F
95$$^\circ$$ F

Explanation

$$\begin{aligned} & \frac{\mathrm{dT}}{\mathrm{dt}}=-\mathrm{k}(\mathrm{T}-80) \\ & \int_\limits{160}^{\mathrm{T}} \frac{\mathrm{dT}}{(\mathrm{T}-80)}=\int_\limits0^{\mathrm{t}}-\mathrm{Kdt} \\ & {[\ln |\mathrm{T}-80|]_{160}^{\mathrm{T}}=-\mathrm{kt}} \\ & \ln |\mathrm{T}-80|-\ln 80=-\mathrm{kt} \\ & \ln \left|\frac{\mathrm{T}-80}{80}\right|=-\mathrm{kt} \\ & \mathrm{T}=80+80 \mathrm{e}^{-\mathrm{kt}} \\ & 120=80+80 \mathrm{e}^{-\mathrm{k} .15} \\ & \frac{40}{80}=\mathrm{e}^{-\mathrm{k} 15}=\frac{1}{2} \\ & \therefore \mathrm{T}(45)=80+80 \mathrm{e}^{-\mathrm{k} .45} \\ & =80+80\left(\mathrm{e}^{-\mathrm{k} .15}\right)^3 \\ & =80+80 \times \frac{1}{8} \\ & =90 \end{aligned}$$

Comments (0)

Advertisement