JEE MAIN - Mathematics (2024 - 30th January Morning Shift - No. 6)

If $$f(x)=\left|\begin{array}{ccc} 2 \cos ^4 x & 2 \sin ^4 x & 3+\sin ^2 2 x \\ 3+2 \cos ^4 x & 2 \sin ^4 x & \sin ^2 2 x \\ 2 \cos ^4 x & 3+2 \sin ^4 x & \sin ^2 2 x \end{array}\right|,$$ then $$\frac{1}{5} f^{\prime}(0)=$$ is equal to :
2
1
0
6

Explanation

$$\begin{aligned} & \left|\begin{array}{ccc} 2 \cos ^4 x & 2 \sin ^4 x & 3+\sin ^2 2 x \\ 3+2 \cos ^4 x & 2 \sin ^4 x & \sin ^2 2 x \\ 2 \cos ^4 x & 3+2 \sin ^2 4 x & \sin ^2 2 x \end{array}\right| \\ & \mathrm{R}_2 \rightarrow \mathrm{R}_2-\mathrm{R}_1, \mathrm{R}_3 \rightarrow \mathrm{R}_3-\mathrm{R}_1 \\ & \left|\begin{array}{ccc} 2 \cos ^4 x & 2 \sin ^4 x & 3+\sin ^2 2 x \\ 3 & 0 & -3 \\ 0 & 3 & -3 \end{array}\right| \\ & \mathrm{f}(\mathrm{x})=45 \\ & \mathrm{f}^{\prime}(\mathrm{x})=0 \\ & \end{aligned}$$

Comments (0)

Advertisement