JEE MAIN - Mathematics (2024 - 30th January Morning Shift - No. 6)
If $$f(x)=\left|\begin{array}{ccc}
2 \cos ^4 x & 2 \sin ^4 x & 3+\sin ^2 2 x \\
3+2 \cos ^4 x & 2 \sin ^4 x & \sin ^2 2 x \\
2 \cos ^4 x & 3+2 \sin ^4 x & \sin ^2 2 x
\end{array}\right|,$$ then $$\frac{1}{5} f^{\prime}(0)=$$ is equal to :
2
1
0
6
Explanation
$$\begin{aligned}
& \left|\begin{array}{ccc}
2 \cos ^4 x & 2 \sin ^4 x & 3+\sin ^2 2 x \\
3+2 \cos ^4 x & 2 \sin ^4 x & \sin ^2 2 x \\
2 \cos ^4 x & 3+2 \sin ^2 4 x & \sin ^2 2 x
\end{array}\right| \\
& \mathrm{R}_2 \rightarrow \mathrm{R}_2-\mathrm{R}_1, \mathrm{R}_3 \rightarrow \mathrm{R}_3-\mathrm{R}_1 \\
& \left|\begin{array}{ccc}
2 \cos ^4 x & 2 \sin ^4 x & 3+\sin ^2 2 x \\
3 & 0 & -3 \\
0 & 3 & -3
\end{array}\right| \\
& \mathrm{f}(\mathrm{x})=45 \\
& \mathrm{f}^{\prime}(\mathrm{x})=0 \\
&
\end{aligned}$$
Comments (0)
