JEE MAIN - Mathematics (2024 - 30th January Morning Shift - No. 14)

Let $$A(2,3,5)$$ and $$C(-3,4,-2)$$ be opposite vertices of a parallelogram $$A B C D$$. If the diagonal $$\overrightarrow{\mathrm{BD}}=\hat{i}+2 \hat{j}+3 \hat{k}$$, then the area of the parallelogram is equal to :
$$\frac{1}{2} \sqrt{410}$$
$$\frac{1}{2} \sqrt{306}$$
$$\frac{1}{2} \sqrt{586}$$
$$\frac{1}{2} \sqrt{474}$$

Explanation

$$\begin{aligned} & \text { Area }=|\overrightarrow{\mathrm{AC}} \times \overrightarrow{\mathrm{BD}}| \\ & =\left|\begin{array}{ccc} \hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 5 & -1 & 7 \\ 1 & 2 & 3 \end{array}\right| \\ & =\frac{1}{2}|-17 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}+11 \hat{\mathrm{k}}|=\frac{1}{2} \sqrt{474} \end{aligned}$$

Comments (0)

Advertisement