JEE MAIN - Mathematics (2024 - 30th January Morning Shift - No. 10)

Let $$f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbf{R}$$ be a differentiable function such that $$f(0)=\frac{1}{2}$$. If the $$\lim _\limits{x \rightarrow 0} \frac{x \int_0^x f(\mathrm{t}) \mathrm{dt}}{\mathrm{e}^{x^2}-1}=\alpha$$, then $$8 \alpha^2$$ is equal to :
4
2
1
16

Explanation

$$\begin{aligned} & \lim _{x \rightarrow 0} \frac{x \int_0^x f(t) d t}{\left(\frac{e^{x^2}-1}{x^2}\right) \times x^2} \\\\ & \lim _{x \rightarrow 0} \frac{\int_0^x f(t) d t}{x} \quad\left(\lim _{x \rightarrow 0} \frac{e^{x^2}-1}{x^2}=1\right) \\\\ & =\lim _{x \rightarrow 0} \frac{f(x)}{1} \text { (using L Hospital) } \\\\ & f(0)=\frac{1}{2} \\\\ & \alpha=\frac{1}{2} \\\\ & 8 \alpha^2=2 \end{aligned}$$

Comments (0)

Advertisement