JEE MAIN - Mathematics (2024 - 30th January Evening Shift - No. 5)
If $$z$$ is a complex number, then the number of common roots of the equations $$z^{1985}+z^{100}+1=0$$ and $$z^3+2 z^2+2 z+1=0$$, is equal to
0
2
1
3
Explanation
$$\begin{array}{ll} \text { } & z^{1985}+z^{100}+1=0 \& z^3+2 z^2+2 z+1=0 \\ & (z+1)\left(z^2-z+1\right)+2 z(z+1)=0 \\ & (z+1)\left(z^2+z+1\right)=0 \\ \Rightarrow \quad & z=-1, \quad z=w, w^2 \\ & \text { Now putting } z=-1 \text { not satisfy } \\ & \text { Now put } z=w \\ \Rightarrow \quad & w^{1985}+w^{100}+1 \\ \Rightarrow \quad & w^2+w+1=0 \\ \Rightarrow \quad & \text { Also, } z=w^2 \\ \Rightarrow \quad & w^{3970}+w^{200}+1 \\ \Rightarrow & w+w^2+1=0 \end{array}$$
Two common root
Comments (0)
