JEE MAIN - Mathematics (2024 - 30th January Evening Shift - No. 27)
The area of the region enclosed by the parabola $$(y-2)^2=x-1$$, the line $$x-2 y+4=0$$ and the positive coordinate axes is _________.
Answer
5
Explanation
Solving the equations
$$\begin{array}{r} (y-2)^2=x-1 \text { and } x-2 y+4=0 \\ x=2(y-2) \end{array}$$
$$\begin{aligned} & \frac{x^2}{4}=x-1 \\ & x^2-4 x+4=0 \\ & (x-2)^2=0 \\ & x=2 \end{aligned}$$
Exclose area (w.r.t. y-axis) $$=\int_\limits0^3 x d y-\text { Area of } \Delta$$.
$$\begin{aligned} & =\int_\limits0^3\left((y-2)^2+1\right) d y-\frac{1}{2} \times 1 \times 2 \\ & =\int_\limits0^3\left(y^2-4 y+5\right) d y-1 \\ & =\left[\frac{y^3}{3}-2 y^2+5 y\right]_0^3-1 \\ & =9-18+15-1=5 \end{aligned}$$
Comments (0)
