JEE MAIN - Mathematics (2024 - 30th January Evening Shift - No. 26)

The variance $$\sigma^2$$ of the data

$$x_i$$ 0 1 5 6 10 12 17
$$f_i$$ 3 2 3 2 6 3 3

is _________.

Answer
29

Explanation

$$\mathrm{x_i}$$ $$\mathrm{f_i}$$ $$\mathrm{f_i x_i}$$ $$\mathrm{f_i x^2_i}$$
0 3 0 0
1 2 2 2
5 3 15 75
6 2 12 72
10 6 60 600
12 3 36 432
17 3 51 867
$$\Sigma \mathrm{f}_{\mathrm{i}}=22$$ $$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^2=2048$$

$$\begin{aligned} & \therefore \quad \Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=176 \\ & \text { So } \overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{176}{22}=8 \\ & \text { for } \sigma^2=\frac{1}{\mathrm{~N}} \sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}{ }^2-(\overline{\mathrm{x}})^2 \\ & =\frac{1}{22} \times 2048-(8)^2 \\ & =93.090964 \\ & =29.0909 \\ & \end{aligned}$$

Comments (0)

Advertisement