JEE MAIN - Mathematics (2024 - 30th January Evening Shift - No. 15)
Suppose $$2-p, p, 2-\alpha, \alpha$$ are the coefficients of four consecutive terms in the expansion of $$(1+x)^n$$. Then the value of $$p^2-\alpha^2+6 \alpha+2 p$$ equals
8
4
6
10
None of the above
Explanation
$$2-p, p, 2-\alpha, \alpha$$
Binomial coefficients are
$$\begin{aligned} & { }^n C_r,{ }^n C_{r+1},{ }^n C_{r+2},{ }^n C_{r+3} \text { respectively } \\ \Rightarrow \quad & { }^n C_r+{ }^n C_{r+1}=2 \\ \Rightarrow \quad & { }^{n+1} C_{r+1}=2 \quad \ldots . .(1) \end{aligned}$$
Also, $${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+2}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+3}=2$$
$$\Rightarrow \quad{ }^{n+1} C_{r+3}=2$$ $$\quad\text{..... (2)}$$
From (1) and (2)
$$\begin{aligned} & { }^{n+1} C_{r+1}={ }^{n+1} C_{r+3} \\ & \Rightarrow \quad 2 \mathrm{r}+4=\mathrm{n}+1 \\ & \mathrm{n}=2 \mathrm{r}+3 \\ & { }^{2 \mathrm{r}+4} \mathrm{C}_{\mathrm{r}+1}=2 \\ \end{aligned}$$
Data Inconsistent
Comments (0)
