JEE MAIN - Mathematics (2024 - 29th January Morning Shift - No. 8)

$$\text { Let } A=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{array}\right] \text { and }|2 \mathrm{~A}|^3=2^{21} \text { where } \alpha, \beta \in Z \text {, Then a value of } \alpha \text { is }$$
9
17
3
5

Explanation

$$\begin{aligned} & |\mathrm{A}|=\alpha^2-\beta^2 \\ & |2 \mathrm{~A}|^3=2^{21} \Rightarrow|\mathrm{A}|=2^4 \\ & \alpha^2-\beta^2=16 \\ & (\alpha+\beta)(\alpha-\beta)=16 \Rightarrow \alpha=4 \text { or } 5 \end{aligned}$$

Comments (0)

Advertisement