JEE MAIN - Mathematics (2024 - 29th January Morning Shift - No. 25)

$$\text { If } \frac{{ }^{11} C_1}{2}+\frac{{ }^{11} C_2}{3}+\ldots+\frac{{ }^{11} C_9}{10}=\frac{n}{m} \text { with } \operatorname{gcd}(n, m)=1 \text {, then } n+m \text { is equal to }$$ _______.
Answer
2041

Explanation

$$\begin{aligned} & \sum_{\mathrm{r}=1}^9 \frac{{ }^{11} \mathrm{C}_{\mathrm{r}}}{\mathrm{r}+1} \\ & =\frac{1}{12} \sum_{\mathrm{r}=1}^9{ }^{12} \mathrm{C}_{\mathrm{r}+1} \\ & =\frac{1}{12}\left[2^{12}-26\right]=\frac{2035}{6} \\ & \therefore \mathrm{m}+\mathrm{n}=2041 \end{aligned}$$

Comments (0)

Advertisement