JEE MAIN - Mathematics (2024 - 29th January Morning Shift - No. 20)

If the value of the integral $$\int_\limits{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{x^2 \cos x}{1+\pi^x}+\frac{1+\sin ^2 x}{1+e^{\sin x^{2123}}}\right) d x=\frac{\pi}{4}(\pi+a)-2$$, then the value of $$a$$ is
$$-\frac{3}{2}$$
3
$$\frac{3}{2}$$
2

Explanation

$$\begin{aligned} & I=\int_\limits{-\pi / 2}^{\pi / 2}\left(\frac{x^2 \cos x}{1+\pi^x}+\frac{1+\sin ^2 x}{1+e^{\sin x^{2023}}}\right) d x \\ & I=\int_\limits{-\pi / 2}^{\pi / 2}\left(\frac{x^2 \cos x}{1+\pi^{-x}}+\frac{1+\sin ^2 x}{1+e^{\sin (-x)^{2023}}}\right) d x \end{aligned}$$

On Adding, we get

$$2 I=\int_\limits{-\pi / 2}^{\pi / 2}\left(x^2 \cos x+1+\sin ^2 x\right) d x$$

On solving

$$\begin{aligned} & \mathrm{I}=\frac{\pi^2}{4}+\frac{3 \pi}{4}-2 \\ & \mathrm{a}=3 \end{aligned}$$

Comments (0)

Advertisement