JEE MAIN - Mathematics (2024 - 29th January Morning Shift - No. 19)

A function $$y=f(x)$$ satisfies $$f(x) \sin 2 x+\sin x-\left(1+\cos ^2 x\right) f^{\prime}(x)=0$$ with condition $$f(0)=0$$. Then, $$f\left(\frac{\pi}{2}\right)$$ is equal to
2
1
$$-$$1
0

Explanation

$$\begin{aligned} & \frac{d y}{d x}-\left(\frac{\sin 2 x}{1+\cos ^2 x}\right) y=\sin x \\ & \text { I.F. }=1+\cos ^2 x \\ & y \cdot\left(1+\cos ^2 x\right)=\int(\sin x) d x \\ & =-\cos x+C \\ & x=0, C=1 \\ & y\left(\frac{\pi}{2}\right)=1 \end{aligned}$$

Comments (0)

Advertisement