JEE MAIN - Mathematics (2024 - 29th January Morning Shift - No. 17)
Let $$P Q R$$ be a triangle with $$R(-1,4,2)$$. Suppose $$M(2,1,2)$$ is the mid point of $$\mathrm{PQ}$$. The distance of the centroid of $$\triangle \mathrm{PQR}$$ from the point of intersection of the lines $$\frac{x-2}{0}=\frac{y}{2}=\frac{z+3}{-1}$$ and $$\frac{x-1}{1}=\frac{y+3}{-3}=\frac{z+1}{1}$$ is
69
$$\sqrt{99}$$
$$\sqrt{69}$$
9
Explanation
Centroid $$G$$ divides MR in $$1: 2$$
$$\mathrm{G}(1,2,2)$$
Point of intersection $$A$$ of given lines is $$(2,-6,0)$$
$$\mathrm{AG}=\sqrt{69}$$
Comments (0)
