JEE MAIN - Mathematics (2024 - 29th January Morning Shift - No. 11)

Let $$O$$ be the origin and the position vectors of $$A$$ and $$B$$ be $$2 \hat{i}+2 \hat{j}+\hat{k}$$ and $$2 \hat{i}+4 \hat{j}+4 \hat{k}$$ respectively. If the internal bisector of $$\angle \mathrm{AOB}$$ meets the line $$\mathrm{AB}$$ at $$\mathrm{C}$$, then the length of $$O C$$ is
$$\frac{3}{2} \sqrt{34}$$
$$\frac{2}{3} \sqrt{31}$$
$$\frac{2}{3} \sqrt{34}$$
$$\frac{3}{2} \sqrt{31}$$

Explanation

JEE Main 2024 (Online) 29th January Morning Shift Mathematics - 3D Geometry Question 44 English Explanation

$$\text { length of } O C=\frac{\sqrt{136}}{3}=\frac{2 \sqrt{34}}{3}$$

Comments (0)

Advertisement