JEE MAIN - Mathematics (2024 - 29th January Evening Shift - No. 8)
Explanation
$$\bar{X}=\frac{24}{5} ; \sigma^2=\frac{194}{25}$$
Let first four observation be $$\mathrm{x}_1, \mathrm{x}_2, \mathrm{x}_3, \mathrm{x}_4$$
Here, $$\frac{x_1+x_2+x_3+x_4+x_5}{5}=\frac{24}{5}$$. ..... (1)
Also, $$\frac{\mathrm{x}_1+\mathrm{x}_2+\mathrm{x}_3+\mathrm{x}_4}{4}=\frac{7}{2}$$
$$\Rightarrow \mathrm{x}_1+\mathrm{x}_2+\mathrm{x}_3+\mathrm{x}_4=14$$
Now from eqn -1
$$\mathrm{x}_5=10$$
Now, $$\sigma^2=\frac{194}{25}$$
$$\begin{aligned} & \frac{\mathrm{x}_1^2+\mathrm{x}_2^2+\mathrm{x}_3^2+\mathrm{x}_4^2+\mathrm{x}_5^2}{5}-\frac{576}{25}=\frac{194}{25} \\ & \Rightarrow \mathrm{x}_1^2+\mathrm{x}_2^2+\mathrm{x}_3^2+\mathrm{x}_4^2=54 \end{aligned}$$
Now, variance of first 4 observations
$$\begin{aligned} \operatorname{Var} & =\frac{\sum_\limits{i=1}^4 x_i^2}{4}-\left(\frac{\sum_\limits{i=1}^4 x_i}{4}\right)^2 \\ & =\frac{54}{4}-\frac{49}{4}=\frac{5}{4} \end{aligned}$$
Comments (0)
