JEE MAIN - Mathematics (2024 - 29th January Evening Shift - No. 17)
Let $$\mathrm{r}$$ and $$\theta$$ respectively be the modulus and amplitude of the complex number $$z=2-i\left(2 \tan \frac{5 \pi}{8}\right)$$, then $$(\mathrm{r}, \theta)$$ is equal to
$$\left(2 \sec \frac{11 \pi}{8}, \frac{11 \pi}{8}\right)$$
$$\left(2 \sec \frac{3 \pi}{8}, \frac{3 \pi}{8}\right)$$
$$\left(2 \sec \frac{5 \pi}{8}, \frac{3 \pi}{8}\right)$$
$$\left(2 \sec \frac{3 \pi}{8}, \frac{5 \pi}{8}\right)$$
Explanation
$$\begin{aligned}
& z=2-i\left(2 \tan \frac{5 \pi}{8}\right)=x+i y(\text { let }) \\
& r=\sqrt{x^2+y^2} ~\& ~\theta=\tan ^{-1} \frac{y}{x} \\
& r=\sqrt{(2)^2+\left(2 \tan \frac{5 \pi}{8}\right)^2} \\
& =\left|2 \sec \frac{5 \pi}{8}\right|=\left|2 \sec \left(\pi-\frac{3 \pi}{8}\right)\right| \\
& =2 \sec \frac{3 \pi}{8} \\
& \& ~\theta = {\tan ^{ - 1}}\left( {{{ - 2\tan {{5\pi } \over 8}} \over 2}} \right) \\
& =\tan ^{-1}\left(\tan ^2\left(\pi-\frac{5 \pi}{8}\right)\right) \\
& =\frac{3 \pi}{8}
\end{aligned}$$
Comments (0)
