JEE MAIN - Mathematics (2024 - 29th January Evening Shift - No. 14)

Let $$\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=12 \vec{a}+4 \vec{b} \text { and } \overrightarrow{O C}=\vec{b}$$, where O is the origin. If S is the parallelogram with adjacent sides OA and OC, then $$\mathrm{{{area\,of\,the\,quadrilateral\,OA\,BC} \over {area\,of\,S}}}$$ is equal to _________.
7
6
8
10

Explanation

JEE Main 2024 (Online) 29th January Evening Shift Mathematics - Vector Algebra Question 37 English Explanation

Area of parallelogram, $$S=|\vec{a} \times \vec{b}|$$

Area of quadrilateral $$=\operatorname{Area}(\triangle \mathrm{OAB})+\operatorname{Area}(\triangle \mathrm{OBC})$$

$$\begin{aligned} & =\frac{1}{2}\{|\vec{a} \times(12 \vec{a}+4 \vec{b})|+|\vec{b} \times(12 \vec{a}+4 \vec{b})|\} \\ & =8|(\vec{a} \times \vec{b})| \end{aligned}$$

$$\text { Ratio }=\frac{8|(\vec{a} \times \vec{b})|}{|(\vec{a} \times \vec{b})|}=8$$

Comments (0)

Advertisement