JEE MAIN - Mathematics (2024 - 29th January Evening Shift - No. 13)

An integer is chosen at random from the integers $$1,2,3, \ldots, 50$$. The probability that the chosen integer is a multiple of atleast one of 4, 6 and 7 is
$$\frac{8}{25}$$
$$\frac{9}{50}$$
$$\frac{14}{25}$$
$$\frac{21}{50}$$

Explanation

Given set $$=\{1,2,3, \ldots \ldots . .50\}$$

$$\mathrm{P}(\mathrm{A})=$$ Probability that number is multiple of 4

$$\mathrm{P(B)}=$$ Probability that number is multiple of 6

$$\mathrm{P}(\mathrm{C})=$$ Probability that number is multiple of 7

Now,

$$\mathrm{P}(\mathrm{A})=\frac{12}{50}, \mathrm{P}(\mathrm{B})=\frac{8}{50}, \mathrm{P}(\mathrm{C})=\frac{7}{50}$$

again

$$\begin{aligned} & \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{4}{50}, \mathrm{P}(\mathrm{B} \cap \mathrm{C})=\frac{1}{50}, \mathrm{P}(\mathrm{A} \cap \mathrm{C})=\frac{1}{50} \\ & \mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=0 \end{aligned}$$

Thus

$$\begin{aligned} P(A & \cup B \cup C)=\frac{12}{50}+\frac{8}{50}+\frac{7}{50}-\frac{4}{50}-\frac{1}{50}-\frac{1}{50}+0 \\ & =\frac{21}{50} \end{aligned}$$

Comments (0)

Advertisement