JEE MAIN - Mathematics (2024 - 29th January Evening Shift - No. 12)
Explanation
Differential equation :-
$$\begin{aligned} & x \cos \frac{y}{x} \frac{d y}{d x}=y \cos \frac{y}{x}+x \\ & \cos \frac{y}{x}\left[x \frac{d y}{d x}-y\right]=x \end{aligned}$$
Divide both sides by $$\mathrm{x}^2$$
$$\cos \frac{y}{x}\left(\frac{x \frac{d y}{d x}-y}{x^2}\right)=\frac{1}{x}$$
Let $$\frac{y}{x}=t$$
$$\begin{aligned} & \cos \mathrm{t}\left(\frac{\mathrm{dt}}{\mathrm{dx}}\right)=\frac{1}{\mathrm{x}} \\ & \cos \mathrm{t~dt}=\frac{1}{\mathrm{x}} \mathrm{dx} \end{aligned}$$
Integrating both sides
$$\begin{aligned} & \sin \mathrm{t}=\ln |\mathrm{x}|+\mathrm{c} \\ & \sin \frac{\mathrm{y}}{\mathrm{x}}=\ln |\mathrm{x}|+\mathrm{c} \end{aligned}$$
Using $$\mathrm{y}(1)=\frac{\pi}{3}$$, we get $$\mathrm{c}=\frac{\sqrt{3}}{2}$$
So, $$\alpha=\sqrt{3} \Rightarrow \alpha^2=3$$
Comments (0)
