JEE MAIN - Mathematics (2024 - 27th January Morning Shift - No. 24)
Let the set of all $a \in \mathbf{R}$ such that the equation $\cos 2 x+a \sin x=2 a-7$ has a solution be $[p, q]$ and $r=\tan 9^{\circ}-\tan 27^{\circ}-\frac{1}{\cot 63^{\circ}}+\tan 81^{\circ}$, then pqr is equal to ____________.
Answer
48
Explanation
$$\begin{aligned}
& \cos 2 x+a \cdot \sin x=2 a-7 \\
& a(\sin x-2)=2(\sin x-2)(\sin x+2) \\
& \sin x=2, a=2(\sin x+2) \\
& \Rightarrow a \in[2,6] \\
& p=2 \quad q=6 \\
& r=\tan 9^{\circ}+\cot 9^{\circ}-\tan 27-\cot 27 \\
& r=\frac{1}{\sin 9 \cdot \cos 9}-\frac{1}{\sin 27 \cdot \cos 27} \\
& =2\left[\frac{4}{\sqrt{5}-1}-\frac{4}{\sqrt{5}+1}\right] \\
& r=4 \\
& p \cdot q \cdot r=2 \times 6 \times 4=48
\end{aligned}$$
Comments (0)
