JEE MAIN - Mathematics (2024 - 27th January Morning Shift - No. 15)

${ }^{n-1} C_r=\left(k^2-8\right){ }^n C_{r+1}$ if and only if :
$2 \sqrt{2}<\mathrm{k}<2 \sqrt{3}$
$2 \sqrt{2}<\mathrm{k} \leq 3$
$2 \sqrt{3}<\mathrm{k}<3 \sqrt{3}$
$2 \sqrt{3}<\mathrm{k} \leq 3 \sqrt{2}$

Explanation

$${ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}}=(\mathrm{k}^2-8){ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+1}$$

$$\underbrace{\mathrm{r}+1 \geq 0, \quad \mathrm{r} \geq 0}_{\mathrm{r} \geq 0}$$

$$\begin{aligned} & \frac{{ }^{n-1} C_r}{{ }^n C_{r+1}}=k^2-8 \\ & \frac{r+1}{n}=k^2-8 \\ & \Rightarrow k^2-8>0 \\ & (k-2 \sqrt{2})(k+2 \sqrt{2})>0 \end{aligned}$$

$$\mathrm{k} \in(-\infty,-2 \sqrt{2}) \cup(2 \sqrt{2}, \infty)\quad \text{.... (I)}$$

$$\begin{aligned} \therefore & \mathrm{n} \geq \mathrm{r}+1, \frac{\mathrm{r}+1}{\mathrm{n}} \leq 1 \\ \Rightarrow & \mathrm{k}^2-8 \leq 1 \\ & \mathrm{k}^2-9 \leq 0 \\ & -3 \leq \mathrm{k} \leq 3 \quad \text{.... (II)} \end{aligned}$$

From equation (I) and (II) we get

$$\mathrm{k} \in[-3,-2 \sqrt{2}) \cup(2 \sqrt{2}, 3]$$

Comments (0)

Advertisement