JEE MAIN - Mathematics (2024 - 27th January Morning Shift - No. 1)
If $\int\limits_0^1 \frac{1}{\sqrt{3+x}+\sqrt{1+x}} \mathrm{~d} x=\mathrm{a}+\mathrm{b} \sqrt{2}+\mathrm{c} \sqrt{3}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are rational numbers, then $2 \mathrm{a}+3 \mathrm{~b}-4 \mathrm{c}$ is equal to :
10
7
4
8
Explanation
$$\begin{aligned} & \int_\limits0^1 \frac{1}{\sqrt{3+x}+\sqrt{1+x}} d x=\int_\limits0^1 \frac{\sqrt{3+x}-\sqrt{1+x}}{(3+x)-(1+x)} d x \\ & \frac{1}{2}\left[\int_\limits0^1 \sqrt{3+x} d x-\int_\limits0^1(\sqrt{1+x}) d x\right] \end{aligned}$$
$$\begin{aligned} & \frac{1}{2}\left[2 \frac{(3+x)^{\frac{3}{2}}}{3}-\frac{2(1+x)^{\frac{3}{2}}}{3}\right]_0^1 \\ & \frac{1}{2}\left[\frac{2}{3}(8-3 \sqrt{3})-\frac{2}{3}\left(2^{\frac{3}{2}}-1\right)\right] \\ & \frac{1}{3}[8-3 \sqrt{3}-2 \sqrt{2}+1] \\ & =3-\sqrt{3}-\frac{2}{3} \sqrt{2}=a+b \sqrt{2}+c \sqrt{3} \\ & a=3, b=-\frac{2}{3}, c=-1 \\ & 2 a+3 b-4 c=6-2+4=8 \end{aligned}$$
Comments (0)
