JEE MAIN - Mathematics (2024 - 27th January Evening Shift - No. 27)
Let $$A$$ be a $$2 \times 2$$ real matrix and $$I$$ be the identity matrix of order 2. If the roots of the equation $$|\mathrm{A}-x \mathrm{I}|=0$$ be $$-1$$ and 3, then the sum of the diagonal elements of the matrix $$\mathrm{A}^2$$ is
Answer
10
Explanation
$$|A-x I|=0$$
Roots are $$-$$1 and 3
Sum of roots $$=\operatorname{tr}(A)=2$$
Product of roots $$=|\mathrm{A}|=-3$$
Let $$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$$
We have $$\mathrm{a}+\mathrm{d}=2$$
$$\mathrm{ad}-\mathrm{bc}=-3$$
$$A^2=\left[\begin{array}{ll}a & b \\ c & d \end{array}\right] \times\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]=\left[\begin{array}{ll} a^2+b c & a b+b d \\ a c+c d & b c+d^2 \end{array}\right]$$
We need $$a^2+b c+b c+d^2$$
$$\begin{aligned} & =a^2+2 b c+d^2 \\ & =(a+d)^2-2 a d+2 b c \\ & =4-2(a d-b c) \\ & =4-2(-3) \\ & =4+6 \\ & =10 \end{aligned}$$
Comments (0)
