JEE MAIN - Mathematics (2024 - 27th January Evening Shift - No. 19)

For $$0 < \mathrm{a} < 1$$, the value of the integral $$\int_\limits0^\pi \frac{\mathrm{d} x}{1-2 \mathrm{a} \cos x+\mathrm{a}^2}$$ is :
$$\frac{\pi^2}{\pi+a^2}$$
$$\frac{\pi^2}{\pi-a^2}$$
$$\frac{\pi}{1-\mathrm{a}^2}$$
$$\frac{\pi}{1+\mathrm{a}^2}$$

Explanation

$$\begin{aligned} & I=\int_\limits0^\pi \frac{d x}{1-2 a \cos x+a^2} ; 0< a<1 \\ & I=\int_\limits0^\pi \frac{d x}{1+2 a \cos x+a^2} \\ & 2 I=2 \int_\limits0^{\pi / 2} \frac{2\left(1+a^2\right)}{\left(1+a^2\right)^2-4 a^2 \cos ^2 x} d x \\ & \Rightarrow I=\int_\limits0^{\pi / 2} \frac{2\left(1+a^2\right) \cdot \sec ^2 x}{\left(1+a^2\right)^2 \cdot \sec ^2 x-4 a^2} d x \\ & \Rightarrow I=\int_\limits0^{\pi / 2} \frac{2 \cdot\left(1+a^2\right) \cdot \sec ^2 x}{\left(1+a^2\right)^2 \cdot \tan ^2 x+\left(1-a^2\right)^2} d x \end{aligned}$$

$$\begin{aligned} & \Rightarrow \mathrm{I}=\int_\limits0^{\pi / 2} \frac{\frac{2 \cdot \sec ^2 \mathrm{x}}{1+\mathrm{a}^2} \cdot \mathrm{dx}}{\tan ^2 \mathrm{x}+\left(\frac{1-\mathrm{a}^2}{1+\mathrm{a}^2}\right)^2} \\ & \Rightarrow \mathrm{I}=\frac{2}{\left(1-\mathrm{a}^2\right)}\left[\frac{\pi}{2}-0\right] \\ & \mathrm{I}=\frac{\pi}{1-\mathrm{a}^2} \end{aligned}$$

Comments (0)

Advertisement