JEE MAIN - Mathematics (2024 - 27th January Evening Shift - No. 18)
The values of $$\alpha$$, for which $$\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$$, lie in the interval
$$(-2,1)$$
$$\left(-\frac{3}{2}, \frac{3}{2}\right)$$
$$(-3,0)$$
$$(0,3)$$
Explanation
$$\left|\begin{array}{ccc} 1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0 \end{array}\right|=0$$
$$\begin{aligned} & \Rightarrow(2 \alpha+3)\left\{\frac{7 \alpha}{6}\right\}-(3 \alpha+1)\left\{\frac{-7}{6}\right\}=0 \\ & \Rightarrow(2 \alpha+3) \cdot \frac{7 \alpha}{6}+(3 \alpha+1) \cdot \frac{7}{6}=0 \\ & \Rightarrow 2 \alpha^2+3 \alpha+3 \alpha+1=0 \\ & \Rightarrow 2 \alpha^2+6 \alpha+1=0 \\ & \Rightarrow \alpha=\frac{-3+\sqrt{7}}{2}, \frac{-3-\sqrt{7}}{2} \end{aligned}$$
Hence option (C) is correct.
Comments (0)
