JEE MAIN - Mathematics (2024 - 27th January Evening Shift - No. 14)

Let $$g(x)=3 f\left(\frac{x}{3}\right)+f(3-x)$$ and $$f^{\prime \prime}(x)>0$$ for all $$x \in(0,3)$$. If $$g$$ is decreasing in $$(0, \alpha)$$ and increasing in $$(\alpha, 3)$$, then $$8 \alpha$$ is :
0
24
18
20

Explanation

$$g(x)=3 f\left(\frac{x}{3}\right)+f(3-x) \text { and } f^{\prime \prime}(x)>0 \forall x \in(0,3)$$

$$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})$$ is increasing function

$$\begin{aligned} & g^{\prime}(x)=3 \times \frac{1}{3} \cdot f^{\prime}\left(\frac{x}{3}\right)-f^{\prime}(3-x) \\ & =f^{\prime}\left(\frac{x}{3}\right)-f^{\prime}(3-x) \end{aligned}$$

If $$\mathrm{g}$$ is decreasing in $$(0, \alpha)$$

$$\begin{aligned} & \mathrm{g}^{\prime}(\mathrm{x})<0 \\ & \mathrm{f}^{\prime}\left(\frac{\mathrm{x}}{3}\right)-\mathrm{f}^{\prime}(3-\mathrm{x})<0 \\ & \mathrm{f}^{\prime}\left(\frac{\mathrm{x}}{3}\right)<\mathrm{f}^{\prime}(3-\mathrm{x}) \\ & \Rightarrow \frac{\mathrm{x}}{3}<3-\mathrm{x} \\ & \Rightarrow \mathrm{x}<\frac{9}{4} \end{aligned}$$

Therefore $$\alpha=\frac{9}{4}$$

Then $$8 \alpha=8 \times \frac{9}{4}=18$$

Comments (0)

Advertisement