JEE MAIN - Mathematics (2024 - 27th January Evening Shift - No. 13)

If $$2 \tan ^2 \theta-5 \sec \theta=1$$ has exactly 7 solutions in the interval $$\left[0, \frac{n \pi}{2}\right]$$, for the least value of $$n \in \mathbf{N}$$, then $$\sum_\limits{k=1}^n \frac{k}{2^k}$$ is equal to:
$$\frac{1}{2^{14}}\left(2^{15}-15\right)$$
$$1-\frac{15}{2^{13}}$$
$$\frac{1}{2^{15}}\left(2^{14}-14\right)$$
$$\frac{1}{2^{13}}\left(2^{14}-15\right)$$

Explanation

$$\begin{aligned} & 2 \tan ^2 \theta-5 \sec \theta-1=0 \\ & \Rightarrow 2 \sec ^2 \theta-5 \sec \theta-3=0 \\ & \Rightarrow(2 \sec \theta+1)(\sec \theta-3)=0 \\ & \Rightarrow \sec \theta=-\frac{1}{2}, 3 \\ & \Rightarrow \cos \theta=-2, \frac{1}{3} \\ & \Rightarrow \cos \theta=\frac{1}{3} \end{aligned}$$

For 7 solutions $$\mathrm{n}=13$$

$$\begin{aligned} & \text { So, } \sum_{\mathrm{k}=1}^{13} \frac{\mathrm{k}}{2^{\mathrm{k}}}=\mathrm{S} \text { (say) } \\ & \mathrm{S}=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\ldots .+\frac{13}{2^{13}} \\ & \frac{1}{2} \mathrm{~S}=\frac{1}{2^2}+\frac{1}{2^3}+\ldots .+\frac{12}{2^{13}}+\frac{13}{2^{14}} \\ & \Rightarrow \frac{\mathrm{S}}{2}=\frac{1}{2} \cdot \frac{1-\frac{1}{2^{13}}}{1-\frac{1}{2}}-\frac{13}{2^{14}} \Rightarrow \mathrm{S}=2 \cdot\left(\frac{2^{13}-1}{2^{13}}\right)-\frac{13}{2^{13}} \end{aligned}$$

Comments (0)

Advertisement