JEE MAIN - Mathematics (2023 - 8th April Evening Shift - No. 3)
Explanation
To solve the integral:
$ I = \int\left[\left(\frac{x}{2}\right)^x+\left(\frac{2}{x}\right)^x\right] \ln \left(\frac{e x}{2}\right) \, dx $
we start by simplifying the logarithmic term:
$ \ln\left(\frac{e x}{2}\right) = \ln(e) + \ln\left(\frac{x}{2}\right) = 1 + \ln\left(\frac{x}{2}\right) $
So the integral becomes:
$ I = \int \left[ \left( \frac{x}{2} \right)^x + \left( \frac{2}{x} \right)^x \right] \left[ 1 + \ln\left( \frac{x}{2} \right) \right] \, dx $
Let's denote:
$ A = \left( \dfrac{x}{2} \right)^x $
$ B = \left( \dfrac{2}{x} \right)^x $
Then, the integral can be split:
$ I = \int \left[ A(1 + \ln\left( \frac{x}{2} \right)) + B(1 + \ln\left( \frac{x}{2} \right)) \right] \, dx $
Calculating $ \int A(1 + \ln\left( \frac{x}{2} \right)) \, dx $:
First, find the derivative of $ A $:
$ \frac{dA}{dx} = A \left[ \ln\left( \frac{x}{2} \right) + 1 \right] $
This means:
$ A \left[ 1 + \ln\left( \frac{x}{2} \right) \right] = \frac{dA}{dx} $
Therefore:
$ \int A \left[ 1 + \ln\left( \frac{x}{2} \right) \right] \, dx = \int \frac{dA}{dx} \, dx = A + C_1 = \left( \frac{x}{2} \right)^x + C_1 $
Calculating $ \int B(1 + \ln\left( \frac{x}{2} \right)) \, dx $:
Note that:
$ \ln\left( \frac{x}{2} \right) = \ln x - \ln 2 $
$ \ln\left( \frac{2}{x} \right) = \ln 2 - \ln x $
The derivative of $ B $ is:
$ \frac{dB}{dx} = B \left[ \ln\left( \frac{2}{x} \right) + 1 \right] = B \left[ \ln 2 - \ln x + 1 \right] $
But in our integrand, we have $ B \left[ 1 + \ln\left( \frac{x}{2} \right) \right] = B \left[ 1 + \ln x - \ln 2 \right] $. Notice that:
$ 1 + \ln x - \ln 2 = - \left( \ln 2 - \ln x + 1 \right) $
Thus:
$ B \left[ 1 + \ln\left( \frac{x}{2} \right) \right] = - \frac{dB}{dx} $
Therefore:
$ \int B \left[ 1 + \ln\left( \frac{x}{2} \right) \right] \, dx = -\int \frac{dB}{dx} \, dx = -B + C_2 = -\left( \frac{2}{x} \right)^x + C_2 $
Combining the Results:
Adding both integrals:
$ I = \left( \frac{x}{2} \right)^x - \left( \frac{2}{x} \right)^x + C $
Answer: Option B
$ \left( \frac{x}{2} \right)^x - \left( \frac{2}{x} \right)^x + C $
Comments (0)
