JEE MAIN - Mathematics (2023 - 8th April Evening Shift - No. 3)

The integral $$ \int\left[\left(\frac{x}{2}\right)^x+\left(\frac{2}{x}\right)^x\right] \ln \left(\frac{e x}{2}\right) d x $$ is equal to :
$$\left(\frac{x}{2}\right)^{x}+\left(\frac{2}{x}\right)^{x}+C$$
$$\left(\frac{x}{2}\right)^{x}-\left(\frac{2}{x}\right)^{x}+C$$
$$\left(\frac{x}{2}\right)^{x} \log _{2}\left(\frac{2}{x}\right)+C$$
None

Explanation

To solve the integral:

$ I = \int\left[\left(\frac{x}{2}\right)^x+\left(\frac{2}{x}\right)^x\right] \ln \left(\frac{e x}{2}\right) \, dx $

we start by simplifying the logarithmic term:

$ \ln\left(\frac{e x}{2}\right) = \ln(e) + \ln\left(\frac{x}{2}\right) = 1 + \ln\left(\frac{x}{2}\right) $

So the integral becomes:

$ I = \int \left[ \left( \frac{x}{2} \right)^x + \left( \frac{2}{x} \right)^x \right] \left[ 1 + \ln\left( \frac{x}{2} \right) \right] \, dx $

Let's denote:

$ A = \left( \dfrac{x}{2} \right)^x $

$ B = \left( \dfrac{2}{x} \right)^x $

Then, the integral can be split:

$ I = \int \left[ A(1 + \ln\left( \frac{x}{2} \right)) + B(1 + \ln\left( \frac{x}{2} \right)) \right] \, dx $

Calculating $ \int A(1 + \ln\left( \frac{x}{2} \right)) \, dx $:

First, find the derivative of $ A $:

$ \frac{dA}{dx} = A \left[ \ln\left( \frac{x}{2} \right) + 1 \right] $

This means:

$ A \left[ 1 + \ln\left( \frac{x}{2} \right) \right] = \frac{dA}{dx} $

Therefore:

$ \int A \left[ 1 + \ln\left( \frac{x}{2} \right) \right] \, dx = \int \frac{dA}{dx} \, dx = A + C_1 = \left( \frac{x}{2} \right)^x + C_1 $

Calculating $ \int B(1 + \ln\left( \frac{x}{2} \right)) \, dx $:

Note that:

$ \ln\left( \frac{x}{2} \right) = \ln x - \ln 2 $

$ \ln\left( \frac{2}{x} \right) = \ln 2 - \ln x $

The derivative of $ B $ is:

$ \frac{dB}{dx} = B \left[ \ln\left( \frac{2}{x} \right) + 1 \right] = B \left[ \ln 2 - \ln x + 1 \right] $

But in our integrand, we have $ B \left[ 1 + \ln\left( \frac{x}{2} \right) \right] = B \left[ 1 + \ln x - \ln 2 \right] $. Notice that:

$ 1 + \ln x - \ln 2 = - \left( \ln 2 - \ln x + 1 \right) $

Thus:

$ B \left[ 1 + \ln\left( \frac{x}{2} \right) \right] = - \frac{dB}{dx} $

Therefore:

$ \int B \left[ 1 + \ln\left( \frac{x}{2} \right) \right] \, dx = -\int \frac{dB}{dx} \, dx = -B + C_2 = -\left( \frac{2}{x} \right)^x + C_2 $

Combining the Results:

Adding both integrals:

$ I = \left( \frac{x}{2} \right)^x - \left( \frac{2}{x} \right)^x + C $

Answer: Option B

$ \left( \frac{x}{2} \right)^x - \left( \frac{2}{x} \right)^x + C $

Comments (0)

Advertisement