JEE MAIN - Mathematics (2023 - 8th April Evening Shift - No. 20)
If domain of the function $$\log _{e}\left(\frac{6 x^{2}+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^{2}-3 x+4}{3 x-5}\right)$$ is $$(\alpha, \beta) \cup(\gamma, \delta]$$, then $$18\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}\right)$$ is equal to ______________.
Answer
20
Explanation
Domain of $\log _e\left(\frac{6 x^2+5 x+1}{2 x-1}\right)$
So, $\frac{6 x^2+5 x+1}{2 x-1}>0$
$$ \begin{aligned} & \Rightarrow \frac{(3 x+1)(2 x+1)}{2 x-1}>0 \\\\ & \Rightarrow x \in\left(\frac{-1}{2}, \frac{-1}{3}\right) \cup\left(\frac{1}{2}, \infty\right) \end{aligned} $$
Domain of $$ \cos ^{-1} x \rightarrow[-1,1] $$
$$ \text { For domain of } \cos ^{-1}\left(\frac{2 x^2-3 x+4}{3 x-5}\right) $$
$$ \begin{aligned} & -1 \leq \frac{2 x^2-3 x+4}{3 x-5} \leq 1 \\\\ & \frac{2 x^2-1}{3 x-5} \geq 0 \text { and } \frac{2 x^2-6 x+9}{3 x-5} \leq 0 \end{aligned} $$
$$ \Rightarrow x \in\left[\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] \cup\left(\frac{5}{3}, \infty\right) $$
So, common domain is $\left(\frac{-1}{2}, \frac{-1}{3}\right) \cup\left[\frac{1}{2}, \frac{1}{\sqrt{2}}\right]$
$$ \begin{aligned} & \therefore 18\left(\alpha^2+\beta^2+\gamma^2+\delta^2\right)=18\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{4}+\frac{1}{2}\right) \\\\ & =18\left(\frac{9+4+9+18}{36}\right)=\frac{1}{2}(40)=20 \end{aligned} $$
So, $\frac{6 x^2+5 x+1}{2 x-1}>0$
$$ \begin{aligned} & \Rightarrow \frac{(3 x+1)(2 x+1)}{2 x-1}>0 \\\\ & \Rightarrow x \in\left(\frac{-1}{2}, \frac{-1}{3}\right) \cup\left(\frac{1}{2}, \infty\right) \end{aligned} $$
Domain of $$ \cos ^{-1} x \rightarrow[-1,1] $$
$$ \text { For domain of } \cos ^{-1}\left(\frac{2 x^2-3 x+4}{3 x-5}\right) $$
$$ \begin{aligned} & -1 \leq \frac{2 x^2-3 x+4}{3 x-5} \leq 1 \\\\ & \frac{2 x^2-1}{3 x-5} \geq 0 \text { and } \frac{2 x^2-6 x+9}{3 x-5} \leq 0 \end{aligned} $$
$$ \Rightarrow x \in\left[\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] \cup\left(\frac{5}{3}, \infty\right) $$
So, common domain is $\left(\frac{-1}{2}, \frac{-1}{3}\right) \cup\left[\frac{1}{2}, \frac{1}{\sqrt{2}}\right]$
$$ \begin{aligned} & \therefore 18\left(\alpha^2+\beta^2+\gamma^2+\delta^2\right)=18\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{4}+\frac{1}{2}\right) \\\\ & =18\left(\frac{9+4+9+18}{36}\right)=\frac{1}{2}(40)=20 \end{aligned} $$
Comments (0)
