JEE MAIN - Mathematics (2023 - 6th April Morning Shift - No. 9)
Explanation
Given vectors :
$ \vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} $
$ \vec{b} = \hat{i} - 2\hat{j} - 2\hat{k} $
$ \vec{c} = -\hat{i} + 4\hat{j} + 3\hat{k} $
Since $ \vec{d} $ is perpendicular to both $ \vec{b} $ and $ \vec{c} $, its direction is given by their cross product :
$ \vec{d} = \lambda(\vec{b} \times \vec{c}) $
$$ \begin{aligned} \vec{b} \times \vec{c} & =\left|\begin{array}{ccc} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & -2 & -2 \\ -1 & 4 & 3 \end{array}\right| \\\\ & =\hat{\mathbf{i}}(-6+8)-\hat{\mathbf{j}}(3-2)+\hat{\mathbf{k}}(4-2)=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}} \end{aligned} $$
Thus, $ \vec{b} \times \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} $
Given this, $ \vec{d} $ can be expressed as :
$ \vec{d} = \lambda(2\hat{i} - \hat{j} + 2\hat{k}) $
Using the given condition that $ \vec{a} \cdot \vec{d} = 18 $ :
$ (2\hat{i} + 3\hat{j} + 4\hat{k}) \cdot \lambda(2\hat{i} - \hat{j} + 2\hat{k}) = 18 $
$ \Rightarrow 2\lambda(2) - 3\lambda(1) + 4\lambda(2) = 18 $
$ \Rightarrow \lambda(4 + 8 - 3) = 18 $
$ \Rightarrow 9\lambda = 18 $
$ \Rightarrow \lambda = 2 $
So, $ \vec{d} = 4\hat{i} - 2\hat{j} + 4\hat{k} $
Now, using the identity :
$ |\vec{a} \times \vec{d}|^2 = |\vec{a}|^2 |\vec{d}|^2 - (\vec{a} \cdot \vec{d})^2 $
Given $ |\vec{a}| = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{29} $
and $ |\vec{d}| = \sqrt{4^2 + (-2)^2 + 4^2} = \sqrt{16 + 4 + 16} = \sqrt{36} = 6$
Using your corrected calculations :
$ |\vec{a} \times \vec{d}|^2 = 29 \times 36 - 18^2 = 1044 - 324 = 720 $
Comments (0)
