JEE MAIN - Mathematics (2023 - 6th April Morning Shift - No. 4)
One vertex of a rectangular parallelopiped is at the origin $$\mathrm{O}$$ and the lengths of its edges along $$x, y$$ and $$z$$ axes are $$3,4$$ and $$5$$ units respectively. Let $$\mathrm{P}$$ be the vertex $$(3,4,5)$$. Then the shortest distance between the diagonal OP and an edge parallel to $$\mathrm{z}$$ axis, not passing through $$\mathrm{O}$$ or $$\mathrm{P}$$ is :
$$\frac{12}{\sqrt{5}}$$
$$12 \sqrt{5}$$
$$\frac{12}{5}$$
$$\frac{12}{5 \sqrt{5}}$$
Explanation
_6th_April_Morning_Shift_en_4_1.png)
Equation of $O P$ is
$$ \begin{aligned} &\frac{x-0}{3-0}=\frac{y-0}{4-0} =\frac{z-0}{5-0} \\\\ &\Rightarrow \frac{x}{3} =\frac{y}{4}=\frac{z}{5} \end{aligned} $$
Equation of edge parallel to $Z$-axis is
$$ \frac{x-3}{0}=\frac{y-0}{0}=\frac{z-5}{1} $$
$\therefore$ Shortest distance
$$ =\frac{\left|\begin{array}{ccc} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{array}\right|}{\sqrt{\begin{array}{r} \left(a_1 b_2-a_2 b_1\right)^2+\left(b_1 c_2-b_2 c_1\right)^2 +\left(c_1 a_2-c_2 a_1\right)^2 \end{array}}} $$
Here,
$$ \begin{aligned} & x_1=0, y_1=0, z_1=0 \\\\ & x_2=3, y_2=0, z_2=5 \\\\ & a_1=3, b_1=4, c_1=5 \\\\ & a_2=0, b_2=0, c_2=1 \end{aligned} $$
$$ \therefore\left|\begin{array}{ccc} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{array}\right|=\left|\begin{array}{ccc} 3 & 0 & 5 \\ 3 & 4 & 5 \\ 0 & 0 & 1 \end{array}\right|=4(3)=12 $$
$\begin{aligned} & \text { and } \sqrt{\left(a_1 b_2-a_2 b_1\right)^2+\left(b_1 c_2-b_2 c_1\right)^2+\left(c_1 a_2-c_2 a_1\right)^2} \\\\ & =\sqrt{0+(4-0)^2+(0-3)^2} \\\\ & =\sqrt{16+9}=5 \\\\ & \therefore \text { Required shortest distance }=\frac{12}{5} \\\\ & \end{aligned}$
Comments (0)
