JEE MAIN - Mathematics (2023 - 6th April Morning Shift - No. 11)

The sum of all the roots of the equation $$\left|x^{2}-8 x+15\right|-2 x+7=0$$ is :
$$11+\sqrt{3}$$
$$9+\sqrt{3}$$
$$9-\sqrt{3}$$
$$11-\sqrt{3}$$

Explanation

$$ \begin{aligned} & \text { We have, }\left|x^2-8 x+15\right|-2 x+7=0 \\\\ & \Rightarrow |(x-3)(x-5)|-2 x+7=0 \end{aligned} $$

JEE Main 2023 (Online) 6th April Morning Shift Mathematics - Quadratic Equation and Inequalities Question 27 English Explanation

Now, when $x \leq 3$ or $x \geq 5$, then

$$ \begin{array}{ccrl} & x^2-8 x+15-2 x+7 =0 \\\\ &\Rightarrow x^2-10 x+22=0 \\\\ &\Rightarrow x^2-10 x+25-3=0 \\\\ &\Rightarrow (x-5)^2-3=0 \\\\ &\Rightarrow (x-5)= \pm \sqrt{3} \\\\ &\Rightarrow x=5+\sqrt{3}, 5-\sqrt{3} \end{array} $$

Since, $x \leq 3$ or $x \geq 5$

$$ \therefore x=5+\sqrt{3} $$

When, $3 < x < 5$, then

$$ \begin{array}{rlrl} & -\left(x^2-8 x+15\right)-2 x+7 =0 \\\\ & \Rightarrow -x^2+8 x-15-2 x+7 =0 \\\\ & \Rightarrow -x^2+6 x-8 =0 \\\\ & \Rightarrow x^2-6 x+8 =0 \\\\ & \Rightarrow (x-4)(x-2) =0 \Rightarrow x=2,4 \end{array} $$

Since, $3 < x < 5$

$$ \therefore x=4 $$

$$ \therefore \text { Sum of roots }=(5+\sqrt{3})+4=9+\sqrt{3} $$

Comments (0)

Advertisement