JEE MAIN - Mathematics (2023 - 6th April Evening Shift - No. 14)
If the mean and variance of the frequency distribution
$$x_i$$ | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
---|---|---|---|---|---|---|---|---|
$$f_i$$ | 4 | 4 | $$\alpha$$ | 15 | 8 | $$\beta$$ | 4 | 5 |
are 9 and 15.08 respectively, then the value of $$\alpha^2+\beta^2-\alpha\beta$$ is ___________.
Answer
25
Explanation
$$
\begin{array}{lllll}
\hline x_i & f_i & x_i^2 & f_i x_i & f_i x_i^2 \\
\hline 2 & 4 & 4 & 8 & 16 \\
\hline 4 & 4 & 16 & 16 & 64 \\
\hline 6 & \alpha & 36 & 6 \alpha & 36 \alpha \\
\hline 8 & 15 & 64 & 120 & 960 \\
\hline 10 & 8 & 100 & 80 & 800 \\
\hline 12 & \beta & 144 & 12 \beta & 144 \beta \\
\hline 14 & 4 & 196 & 56 & 784 \\
\hline 16 & 5 & 256 & 80 & 1280 \\
\hline
\end{array}
$$
$$ \therefore $$ $\begin{aligned} & \Sigma f_i=40 +\alpha+\beta\end{aligned}$
$\begin{aligned} & \Sigma f_i x_i=360+ 6 \alpha+12 \beta\end{aligned}$
$\begin{aligned} & \Sigma f_i x_i^2=3904 +36 \alpha+144 \beta\end{aligned}$
Given, mean $=9$
$$ \begin{aligned} & \Rightarrow \frac{\Sigma f_i x_i}{\Sigma f_i}=9 \\\\ & \Rightarrow \frac{360+6 \alpha+12 \beta}{40+\alpha+\beta}=9 \\\\ & \Rightarrow 360+6 \alpha+12 \beta=9(40+\alpha+\beta) \\\\ & \Rightarrow 3 \beta=3 \alpha \\\\ & \Rightarrow \alpha=\beta .........(i) \end{aligned} $$
$\begin{aligned} & \text { Variance }=15.08 \\\\ & \Rightarrow \frac{\Sigma f_i x_i^2}{\Sigma f_i}-\left(\frac{\Sigma f_i x_i}{\Sigma f_i}\right)^2=15.08 \\\\ & \Rightarrow \frac{3904+36 \alpha+144 \beta}{40+\alpha+\beta}-(9)^2=15.08 \\\\ & \Rightarrow \frac{3904+180 \alpha}{40+2 \alpha}=81+15.08 \quad[\because \alpha=\beta] \\\\ & \Rightarrow 3904+180 \alpha=96.08(40+2 \alpha) \\\\ & \Rightarrow 3904+180 \alpha=3843.2+192.16 \alpha \\\\ & \Rightarrow 60.8=12.16 \alpha \\\\ & \Rightarrow \alpha=5=\beta \\\\ & \therefore \alpha^2+\beta^2-\alpha \beta=25+25-25=25\end{aligned}$
$$ \therefore $$ $\begin{aligned} & \Sigma f_i=40 +\alpha+\beta\end{aligned}$
$\begin{aligned} & \Sigma f_i x_i=360+ 6 \alpha+12 \beta\end{aligned}$
$\begin{aligned} & \Sigma f_i x_i^2=3904 +36 \alpha+144 \beta\end{aligned}$
Given, mean $=9$
$$ \begin{aligned} & \Rightarrow \frac{\Sigma f_i x_i}{\Sigma f_i}=9 \\\\ & \Rightarrow \frac{360+6 \alpha+12 \beta}{40+\alpha+\beta}=9 \\\\ & \Rightarrow 360+6 \alpha+12 \beta=9(40+\alpha+\beta) \\\\ & \Rightarrow 3 \beta=3 \alpha \\\\ & \Rightarrow \alpha=\beta .........(i) \end{aligned} $$
$\begin{aligned} & \text { Variance }=15.08 \\\\ & \Rightarrow \frac{\Sigma f_i x_i^2}{\Sigma f_i}-\left(\frac{\Sigma f_i x_i}{\Sigma f_i}\right)^2=15.08 \\\\ & \Rightarrow \frac{3904+36 \alpha+144 \beta}{40+\alpha+\beta}-(9)^2=15.08 \\\\ & \Rightarrow \frac{3904+180 \alpha}{40+2 \alpha}=81+15.08 \quad[\because \alpha=\beta] \\\\ & \Rightarrow 3904+180 \alpha=96.08(40+2 \alpha) \\\\ & \Rightarrow 3904+180 \alpha=3843.2+192.16 \alpha \\\\ & \Rightarrow 60.8=12.16 \alpha \\\\ & \Rightarrow \alpha=5=\beta \\\\ & \therefore \alpha^2+\beta^2-\alpha \beta=25+25-25=25\end{aligned}$
Comments (0)
