JEE MAIN - Mathematics (2023 - 31st January Morning Shift - No. 14)
The value of $$\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{(2+3 \sin x)}{\sin x(1+\cos x)} d x$$ is equal to :
$$\frac{10}{3}-\sqrt{3}+\log _{e} \sqrt{3}$$
$$\frac{7}{2}-\sqrt{3}-\log _{e} \sqrt{3}$$
$$\frac{10}{3}-\sqrt{3}-\log _{e} \sqrt{3}$$
$$-2+3\sqrt{3}+\log _{e} \sqrt{3}$$
Explanation
Let I = $$\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{(2+3 \sin x)}{\sin x(1+\cos x)} d x$$
$$ =\int\limits_{\pi / 3}^{\pi / 2} \frac{2}{\sin x(1+\cos x)} d x+\int\limits_{\pi / 3}^{\pi / 2} \frac{3}{1+\cos x} d x $$
$$ \begin{aligned} =\int\limits_{\pi / 3}^{\pi / 2} \frac{2(1-\cos x)}{\sin x\left(1-\cos ^2 x\right)} & d x +\int\limits_{\pi / 3}^{\pi / 2} \frac{3}{1+\cos x} d x \end{aligned} $$
$$ =\int\limits_{\pi / 3}^{\pi / 2} \frac{2(1-\cos x)}{\sin ^3 x} d x+\int\limits_{\pi / 3}^{\pi / 2} \frac{3}{2 \cos ^2 \frac{x}{2}} d x $$
$$ \begin{array}{r} =\int\limits_{\pi / 3}^{\pi / 2} \frac{2}{\sin ^3 x} d x-\int\limits_{\pi / 3}^{\pi / 2} 2 \cot x \operatorname{cosec}^2 x d x +\int\limits_{\pi / 3}^{\pi / 2} \frac{3}{2} \sec ^2 \frac{x}{2} d x \end{array} $$
$$ =2 I_1-2 I_2+\frac{3}{2} I_3 $$
Now,
$$ \begin{aligned} I_1 & =\int\limits_{\pi / 3}^{\pi / 2} \operatorname{cosec}^3 x d x \\\\ & =\int\limits_{\pi / 3}^{\pi / 2} \sqrt{1+\cot ^2 x} \operatorname{cosec}^2 x d x \end{aligned} $$
Put $\cot x=t \Rightarrow-\operatorname{cosec}^2 x d x=d t$
When, $x=\frac{\pi}{3} \Rightarrow t=\frac{1}{\sqrt{3}} \text { and } x=\frac{\pi}{2} \Rightarrow t=0$
$$ \begin{aligned} \therefore & I_1=-\int\limits_{\frac{1}{\sqrt{3}}}^0 \sqrt{1+t^2} d t \\\\ = & \int\limits_0^{\frac{1}{\sqrt{3}}} \sqrt{1+t^2} d t \\\\ = & {\left[\frac{t}{2} \sqrt{1+t^2}+\frac{1}{2} \log \left[t+\sqrt{1+t^2}\right]\right]_0^{\frac{1}{\sqrt{3}}} } \\\\ = & \frac{1}{3}+\frac{1}{2} \log \sqrt{3} \end{aligned} $$
$$ I_2=\int\limits_{\pi / 3}^{\pi / 2} \cot x \operatorname{cosec}^2 x d x $$
Put $\cot x=t \Rightarrow \operatorname{cosec}^2 x d x=-d t$
When, $x=\frac{\pi}{3}$ $\Rightarrow t=\frac{1}{\sqrt{3}}$ and $x=\frac{\pi}{2} \Rightarrow t=0$
$$ \therefore \begin{aligned} I_2 & =-\int\limits_{\frac{1}{\sqrt{3}}}^0 t d t \\\\ & =\int\limits_0^{\frac{1}{\sqrt{3}} t} t d t=\left[\frac{t^2}{2}\right]_0^{\frac{1}{\sqrt{3}}}=\frac{1}{6} \end{aligned} $$
$$ \begin{aligned} & I_3=\int\limits_{\frac{\pi}{3}}^{\frac{\pi}{2}} \sec ^2 \frac{x}{2} d x \\\\ = & 2\left(\tan \frac{\pi}{4}-\tan \frac{\pi}{6}\right)=2\left(1-\frac{1}{\sqrt{3}}\right) \end{aligned} $$
$$ \begin{aligned} & \therefore \quad I=2 I_1-2 I_2+\frac{3}{2} I_3 \\\\ & =2\left(\frac{1}{3}+\frac{1}{2} \log \sqrt{3}\right)-2\left(\frac{1}{6}\right) +\frac{3}{2}\left(2\left(1-\frac{1}{\sqrt{3}}\right)\right) \end{aligned} $$
$$ \begin{aligned} & =\frac{2}{3}+\log \sqrt{3}-\frac{1}{3}+3-\sqrt{3} \\\\ & =\frac{10}{3}-\sqrt{3}+\log _e \sqrt{3} \end{aligned} $$
$$ =\int\limits_{\pi / 3}^{\pi / 2} \frac{2}{\sin x(1+\cos x)} d x+\int\limits_{\pi / 3}^{\pi / 2} \frac{3}{1+\cos x} d x $$
$$ \begin{aligned} =\int\limits_{\pi / 3}^{\pi / 2} \frac{2(1-\cos x)}{\sin x\left(1-\cos ^2 x\right)} & d x +\int\limits_{\pi / 3}^{\pi / 2} \frac{3}{1+\cos x} d x \end{aligned} $$
$$ =\int\limits_{\pi / 3}^{\pi / 2} \frac{2(1-\cos x)}{\sin ^3 x} d x+\int\limits_{\pi / 3}^{\pi / 2} \frac{3}{2 \cos ^2 \frac{x}{2}} d x $$
$$ \begin{array}{r} =\int\limits_{\pi / 3}^{\pi / 2} \frac{2}{\sin ^3 x} d x-\int\limits_{\pi / 3}^{\pi / 2} 2 \cot x \operatorname{cosec}^2 x d x +\int\limits_{\pi / 3}^{\pi / 2} \frac{3}{2} \sec ^2 \frac{x}{2} d x \end{array} $$
$$ =2 I_1-2 I_2+\frac{3}{2} I_3 $$
Now,
$$ \begin{aligned} I_1 & =\int\limits_{\pi / 3}^{\pi / 2} \operatorname{cosec}^3 x d x \\\\ & =\int\limits_{\pi / 3}^{\pi / 2} \sqrt{1+\cot ^2 x} \operatorname{cosec}^2 x d x \end{aligned} $$
Put $\cot x=t \Rightarrow-\operatorname{cosec}^2 x d x=d t$
When, $x=\frac{\pi}{3} \Rightarrow t=\frac{1}{\sqrt{3}} \text { and } x=\frac{\pi}{2} \Rightarrow t=0$
$$ \begin{aligned} \therefore & I_1=-\int\limits_{\frac{1}{\sqrt{3}}}^0 \sqrt{1+t^2} d t \\\\ = & \int\limits_0^{\frac{1}{\sqrt{3}}} \sqrt{1+t^2} d t \\\\ = & {\left[\frac{t}{2} \sqrt{1+t^2}+\frac{1}{2} \log \left[t+\sqrt{1+t^2}\right]\right]_0^{\frac{1}{\sqrt{3}}} } \\\\ = & \frac{1}{3}+\frac{1}{2} \log \sqrt{3} \end{aligned} $$
$$ I_2=\int\limits_{\pi / 3}^{\pi / 2} \cot x \operatorname{cosec}^2 x d x $$
Put $\cot x=t \Rightarrow \operatorname{cosec}^2 x d x=-d t$
When, $x=\frac{\pi}{3}$ $\Rightarrow t=\frac{1}{\sqrt{3}}$ and $x=\frac{\pi}{2} \Rightarrow t=0$
$$ \therefore \begin{aligned} I_2 & =-\int\limits_{\frac{1}{\sqrt{3}}}^0 t d t \\\\ & =\int\limits_0^{\frac{1}{\sqrt{3}} t} t d t=\left[\frac{t^2}{2}\right]_0^{\frac{1}{\sqrt{3}}}=\frac{1}{6} \end{aligned} $$
$$ \begin{aligned} & I_3=\int\limits_{\frac{\pi}{3}}^{\frac{\pi}{2}} \sec ^2 \frac{x}{2} d x \\\\ = & 2\left(\tan \frac{\pi}{4}-\tan \frac{\pi}{6}\right)=2\left(1-\frac{1}{\sqrt{3}}\right) \end{aligned} $$
$$ \begin{aligned} & \therefore \quad I=2 I_1-2 I_2+\frac{3}{2} I_3 \\\\ & =2\left(\frac{1}{3}+\frac{1}{2} \log \sqrt{3}\right)-2\left(\frac{1}{6}\right) +\frac{3}{2}\left(2\left(1-\frac{1}{\sqrt{3}}\right)\right) \end{aligned} $$
$$ \begin{aligned} & =\frac{2}{3}+\log \sqrt{3}-\frac{1}{3}+3-\sqrt{3} \\\\ & =\frac{10}{3}-\sqrt{3}+\log _e \sqrt{3} \end{aligned} $$
Comments (0)
