JEE MAIN - Mathematics (2023 - 31st January Evening Shift - No. 9)

Among the relations

$\mathrm{S}=\left\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathbb{R}-\{0\}, 2+\frac{\mathrm{a}}{\mathrm{b}}>0\right\}$

and $\mathrm{T}=\left\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathbb{R}, \mathrm{a}^{2}-\mathrm{b}^{2} \in \mathbb{Z}\right\}$,
$\mathrm{S}$ is transitive but $\mathrm{T}$ is not
both $\mathrm{S}$ and $\mathrm{T}$ are symmetric
neither $S$ nor $T$ is transitive
$T$ is symmetric but $S$ is not

Explanation

For relation $\mathrm{T}=\mathrm{a}^{2}-\mathrm{b}^{2}=-\mathrm{I}$

Then, $(\mathrm{b}, \mathrm{a})$ on relation $\mathrm{R}$

$\Rightarrow \mathrm{b}^{2}-\mathrm{a}^{2}=-\mathrm{I}$

$\therefore \mathrm{T}$ is symmetric

$\mathrm{S}=\left\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathrm{R}-\{0\}, 2+\frac{\mathrm{a}}{\mathrm{b}}>0\right\}$

$2+\frac{\mathrm{a}}{\mathrm{b}}>0 \Rightarrow \frac{\mathrm{a}}{\mathrm{b}}>-2, \Rightarrow \frac{\mathrm{b}}{\mathrm{a}}<\frac{-1}{2}$

If $(b, a) \in \mathbf{S}$ then

$2+\frac{\mathrm{b}}{\mathrm{a}}$ not necessarily positive

$\therefore \mathrm{S}$ is not symmetric

Comments (0)

Advertisement