JEE MAIN - Mathematics (2023 - 31st January Evening Shift - No. 5)
Let $\alpha>0$. If $\int\limits_0^\alpha \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} \mathrm{~d} x=\frac{16+20 \sqrt{2}}{15}$, then $\alpha$ is equal to :
4
2
$2 \sqrt{2}$
$\sqrt{2}$
Explanation
$I=\int\limits_{0}^{\alpha} \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} d x, \alpha>0$
$$ \begin{aligned} & =\frac{1}{\alpha} \int\limits_{0}^{\alpha} x(\sqrt{x+\alpha}+\sqrt{x}) d x \end{aligned} $$
$$\eqalign{ & = {1 \over \alpha }\int\limits_0^\alpha {\left( {x\sqrt {x + \alpha } + x\sqrt x } \right)} dx \cr & = {1 \over \alpha }\int\limits_0^\alpha {\left[ {\left( {x + \alpha - \alpha } \right)\sqrt {x + \alpha } + {x^{{3 \over 2}}}} \right]} dx \cr} $$
$$ \begin{aligned} & =\frac{1}{\alpha}\int\limits_0^\alpha \left[(x+\alpha)^{3 / 2}-\alpha(x+\alpha)^{1 / 2}+x^{3 / 2}\right] d x \\\\ & =\frac{1}{\alpha}\left[\frac{2}{5}(x+\alpha)^{5 / 2}-\alpha \frac{2}{3}(x+\alpha)^{3 / 2}+\frac{2}{5} x^{5 / 2}\right]_0^\alpha \\\\ & =\frac{1}{\alpha}\left(\frac{2}{5}(2 \alpha)^{5 / 2}-\frac{2 \alpha}{3}(2 \alpha)^{3 / 2}+\frac{2}{5} \alpha^{5 / 2}-\frac{2}{5} \alpha^{5 / 2}+\frac{2}{3} \alpha^{5 / 2}\right) \\\\ & =\frac{1}{\alpha}\left(\frac{2^{7 / 2} \alpha^{5 / 2}}{5}-\frac{2^{5 / 2} \alpha^{5 / 2}}{3}+\frac{2}{3} \alpha^{5 / 2}\right)=\alpha^{3 / 2}\left(\frac{2^{7 / 2}}{5}-\frac{2^{5 / 2}}{3}+\frac{2}{3}\right) \\\\ & =\frac{\alpha^{3 / 2}}{15}(24 \sqrt{2}-20 \sqrt{2}+10)=\frac{\alpha^{3 / 2}}{15}(4 \sqrt{2}+10) \end{aligned} $$
Now, $\frac{\alpha^{3 / 2}}{15}(4 \sqrt{2}+10)=\frac{16+20 \sqrt{2}}{15}=\frac{2 \sqrt{2}(4 \sqrt{2}+10)}{15}$
$$ \Rightarrow \alpha^{3 / 2}=2 \sqrt{2}=2^{3 / 2} $$
$$\Rightarrow \alpha=2 $$
$$ \begin{aligned} & =\frac{1}{\alpha} \int\limits_{0}^{\alpha} x(\sqrt{x+\alpha}+\sqrt{x}) d x \end{aligned} $$
$$\eqalign{ & = {1 \over \alpha }\int\limits_0^\alpha {\left( {x\sqrt {x + \alpha } + x\sqrt x } \right)} dx \cr & = {1 \over \alpha }\int\limits_0^\alpha {\left[ {\left( {x + \alpha - \alpha } \right)\sqrt {x + \alpha } + {x^{{3 \over 2}}}} \right]} dx \cr} $$
$$ \begin{aligned} & =\frac{1}{\alpha}\int\limits_0^\alpha \left[(x+\alpha)^{3 / 2}-\alpha(x+\alpha)^{1 / 2}+x^{3 / 2}\right] d x \\\\ & =\frac{1}{\alpha}\left[\frac{2}{5}(x+\alpha)^{5 / 2}-\alpha \frac{2}{3}(x+\alpha)^{3 / 2}+\frac{2}{5} x^{5 / 2}\right]_0^\alpha \\\\ & =\frac{1}{\alpha}\left(\frac{2}{5}(2 \alpha)^{5 / 2}-\frac{2 \alpha}{3}(2 \alpha)^{3 / 2}+\frac{2}{5} \alpha^{5 / 2}-\frac{2}{5} \alpha^{5 / 2}+\frac{2}{3} \alpha^{5 / 2}\right) \\\\ & =\frac{1}{\alpha}\left(\frac{2^{7 / 2} \alpha^{5 / 2}}{5}-\frac{2^{5 / 2} \alpha^{5 / 2}}{3}+\frac{2}{3} \alpha^{5 / 2}\right)=\alpha^{3 / 2}\left(\frac{2^{7 / 2}}{5}-\frac{2^{5 / 2}}{3}+\frac{2}{3}\right) \\\\ & =\frac{\alpha^{3 / 2}}{15}(24 \sqrt{2}-20 \sqrt{2}+10)=\frac{\alpha^{3 / 2}}{15}(4 \sqrt{2}+10) \end{aligned} $$
Now, $\frac{\alpha^{3 / 2}}{15}(4 \sqrt{2}+10)=\frac{16+20 \sqrt{2}}{15}=\frac{2 \sqrt{2}(4 \sqrt{2}+10)}{15}$
$$ \Rightarrow \alpha^{3 / 2}=2 \sqrt{2}=2^{3 / 2} $$
$$\Rightarrow \alpha=2 $$
Comments (0)
