JEE MAIN - Mathematics (2023 - 30th January Morning Shift - No. 4)
If [t] denotes the greatest integer $$\le \mathrm{t}$$, then the value of $${{3(e - 1)} \over e}\int\limits_1^2 {{x^2}{e^{[x] + [{x^3}]}}dx} $$ is :
$$\mathrm{e^8-e}$$
$$\mathrm{e^7-1}$$
$$\mathrm{e^9-e}$$
$$\mathrm{e^8-1}$$
Explanation
$$I = {{3(e - 1)} \over e}\int_1^2 {{x^2}{e^{[x] + [{x^3}]}}dx} $$
$$ = {{3(e - 1)} \over e}\int_1^2 {{x^2}{e^{1 + [{x^3}]}}dx} $$ ($$\because$$ $$[x] = 1$$ when $$x \in (12)$$)
$$ = 3(e - 1)\int_1^2 {{x^2}{e^{[{x^3}]}}dx} $$
Let $${x^3} = t$$
$$I = (e - 1)\int_1^8 {{e^{[t]}}dt} $$
$$ = ({e^{ - 1}})({e^1} + {e^2} + {e^3}\, + \,...\, + \,{e^7})$$
$$ = (e - 1)e{{({e^7} - 1)} \over {e - 1}}$$
$$ = {e^8} - e$$
Comments (0)
