JEE MAIN - Mathematics (2023 - 30th January Evening Shift - No. 14)

Let $A=\{1,2,3,5,8,9\}$. Then the number of possible functions $f: A \rightarrow A$ such that $f(m \cdot n)=f(m) \cdot f(n)$ for every $m, n \in A$ with $m \cdot n \in A$ is equal to ___________.
Answer
432

Explanation

$$f(1.n)=f(1).f(n)\Rightarrow f(1)=1$$.

$$f(3.3)=(f(3))^2$$

Hence, the possibilities for $$(t(3),(9))$$ are $$(1,1)$$ and $$(3,9)$$.

Other three i.e. $$f(2),f(5),f(8)$$

Can be chosen in 6$$^3$$ ways.

Hence, total number of functions

$$6^3\times2=432$$

Comments (0)

Advertisement