JEE MAIN - Mathematics (2023 - 29th January Morning Shift - No. 7)

Let $$f(x) = x + {a \over {{\pi ^2} - 4}}\sin x + {b \over {{\pi ^2} - 4}}\cos x,x \in R$$ be a function which

satisfies $$f(x) = x + \int\limits_0^{\pi /2} {\sin (x + y)f(y)dy} $$. then $$(a+b)$$ is equal to
$$ - 2\pi (\pi + 2)$$
$$ - \pi (\pi - 2)$$
$$ - \pi (\pi + 2)$$
$$ - 2\pi (\pi - 2)$$

Explanation

$f(x)=x+\int\limits_{0}^{\pi / 2}(\sin x \cos y+\cos x \sin y) f(y) d y$

$f(x)=x+\int\limits_{0}^{\pi / 2}((\cos y f(y) d y) \sin x+(\sin y f(y) d y) \cos x)\quad....(1)$

On comparing with

$f(x)=x+\frac{a}{\pi^{2}-4} \sin x+\frac{b}{\pi^{2}-4} \cos x, x \in \mathbb{R}$ then

$\Rightarrow \frac{a}{\pi^{2}-4}=\int_{0}^{\pi / 2} \cos y f(y) d y \quad....(2)$

$\Rightarrow \frac{b}{\pi^{2}-4}=\int_{0}^{\pi / 2} \sin y f(y) d y \quad....(3)$

Add (2) and (3)

$\frac{a+b}{\pi^{2}-4}=\int_{0}^{\pi / 2}(\sin y+\cos y) f(y) d y \quad....(4)$

$\frac{a+b}{\pi^{2}-4}=\int_{0}^{\pi / 2}(\sin y+\cos y) f\left(\frac{\pi}{2}-y\right) d y\quad....(5)$

Add (4) and (5)

$\frac{2(a+b)}{\pi^{2}-4}=\int_{0}^{\pi / 2}(\sin y+\cos y)\left(\frac{\pi}{2}+\frac{(a+b)}{\pi^{2}-4}(\sin y+\cos y)\right) d y$

$=\pi+\frac{a+b}{\pi^{2}-4}\left(\frac{\pi}{2}+1\right)$

$(a+b)=-2 \pi(\pi+2)$

Comments (0)

Advertisement