JEE MAIN - Mathematics (2023 - 29th January Morning Shift - No. 11)
Explanation
Given,
$$y(x + 1)dx - {x^2}dy = 0$$
$$ \Rightarrow \left( {{{x + 1} \over {{x^2}}}} \right)dx = {{dy} \over y}$$
$$ \Rightarrow {1 \over x}dx + {{dx} \over {{x^2}}} = {{dy} \over y}$$
Integrating both sides, we get
$$\int {{{dx} \over x} + \int {{{dx} \over {{x^2}}} = \int {{{dy} \over y}} } } $$
$$ \Rightarrow \ln |x| - {1 \over x} = \ln |y| + C$$ ..... (1)
Given $$y(1) = e$$
$$\therefore$$ $$x = 1$$ and $$y = e$$
Putting value of x and y in equation (1), we get
$$\ln |1| - {1 \over 1} = \ln |e| + C$$
$$ \Rightarrow 0 - 1 = 1 + C$$
$$ \Rightarrow C = - 2$$
$$\therefore$$ Equation (1) becomes,
$$\ln |x| = - {1 \over x} = \ln |y| - 2$$
$$ \Rightarrow \ln |y| = \ln |x| - {1 \over x} + 2$$
$$ \Rightarrow y = {e^{\ln |x|}}\,.\,{e^{2 - {1 \over x}}}$$
$$ \Rightarrow y = x\,.\,{e^{2 - {1 \over x}}}$$
Now,
$$\mathop {\lim }\limits_{x \to {0^ + }} y$$
$$ = \mathop {\lim }\limits_{x \to {0^ + }} \left( {x\,.\,{e^{2 - {1 \over x}}}} \right)$$
$$ = 0\,.\,{e^{ - \alpha }}$$
$$ = 0$$
Comments (0)
