JEE MAIN - Mathematics (2023 - 29th January Evening Shift - No. 9)

The area of the region $$A = \left\{ {(x,y):\left| {\cos x - \sin x} \right| \le y \le \sin x,0 \le x \le {\pi \over 2}} \right\}$$ is
$$\sqrt 5 + 2\sqrt 2 - 4.5$$
$$1 - {3 \over {\sqrt 2 }} + {4 \over {\sqrt 5 }}$$
$$\sqrt 5 - 2\sqrt 2 + 1$$
$${3 \over {\sqrt 5 }} - {3 \over {\sqrt 2 }} + 1$$

Explanation

$$ |\cos x-\sin x| \leq y \leq \sin x $$

Intersection point of $\cos x-\sin x=\sin x$

$$ \Rightarrow \tan x=\frac{1}{2} $$

Let $\psi=\tan ^{-1} \frac{1}{2}$

So, $\tan \psi=\frac{1}{2}, \sin \psi=\frac{1}{\sqrt{5}}, \cos \psi=\frac{2}{\sqrt{5}}$

JEE Main 2023 (Online) 29th January Evening Shift Mathematics - Area Under The Curves Question 51 English Explanation

Area $$ = \int\limits_{{{\tan }^{ - 1}}{1 \over 2}}^{{\pi \over 4}} {(\sin x - (\cos x - \sin x))dx + \int\limits_{{\pi \over 4}}^{{\pi \over 2}} {(\sin x - (\sin x - \cos x))dx} } $$

$$ =\int\limits_{{{\tan }^{ - 1}}{1 \over 2}}^{\pi / 4}(2 \sin x-\cos x) d x+\int\limits_{\pi / 4}^{\pi / 2} \cos x d x $$

$$ =[-2 \cos x-\sin x]_{{{\tan }^{ - 1}}{1 \over 2}}^{\pi / 4}+[\sin x]_{\pi / 4}^{\pi / 2} $$

$$ =-\sqrt{2}-\frac{1}{\sqrt{2}}+2 \cos ({{{\tan }^{ - 1}}{1 \over 2}}) +\sin ({{{\tan }^{ - 1}}{1 \over 2}})+\left(1-\frac{1}{\sqrt{2}}\right)$$

$=-\sqrt{2}-\frac{1}{\sqrt{2}}+2\left(\frac{2}{\sqrt{5}}\right)+\left(\frac{1}{\sqrt{5}}\right)+1-\frac{1}{\sqrt{2}}$

$$ = \sqrt 5 - 2\sqrt 2 + 1$$

Comments (0)

Advertisement