JEE MAIN - Mathematics (2023 - 29th January Evening Shift - No. 2)
Let R be a relation defined on $$\mathbb{N}$$ as $$a\mathrm{R}b$$ if $$2a+3b$$ is a multiple of $$5,a,b\in \mathbb{N}$$. Then R is
an equivalence relation
non reflexive
symmetric but not transitive
transitive but not symmetric
Explanation
a R b if 2a + 3b = 5m, m $$\in$$ $$l$$
(1) $$(a,a) \in R$$ as $$2a + 3a = 5a,a \in N$$
Hence, R is reflexive
(2) If $$(a,b) \in R$$ then $$2a + 3 = 5m$$
Now, $$5(a + b) = 5n$$
$$3a + 2b + 2a + 3b = 5n$$
$$\therefore$$ $$3a + 2b = 5(n - m)$$
$$\therefore$$ $$(b,a) \in R$$
$$\therefore$$ R is symmetric
(3) If $$(a,b) \in R$$ and $$(b,c) \in R$$ then
$$2a + 3b = 5m,2b + 3c = 5n$$
$$ \Rightarrow 2a + 5b + 3c = 5(m + n)$$
$$ \Rightarrow 2a + 3c = 5(m = n - b)$$
$$\therefore$$ $$(a,c) \in R$$
$$\therefore$$ R is transitive
Hence, R is equivalence relation.
Option (1) is correct.
Comments (0)
